Posts

NWGA Guest Blog:  Renewable Hydrogen Helps Natural Gas Advance Clean Energy in the Pacific Northwest

From the Partnership for Energy Progress (PEP)

Please enjoy the following article from PEP that can also be found at https://www.pepnw.org/renewable-hydrogen-helps-natural-gas-advance-clean-energy-in-the-pacific-northwest/.

How will natural gas infrastructure advance the goal of clean energy in the Pacific Northwest? One of the most promising new technologies is called Renewable Hydrogen.

Renewable Hydrogen – or “green” hydrogen – is created by utilizing excess wind, solar or hydroelectric power to separate water molecules into hydrogen and oxygen. This process, called electrolysis, then delivers hydrogen into natural gas pipelines and releases the oxygen into the air. Renewable Hydrogen acts just like battery storage for excess renewable electricity. It captures the excess power so we can use it when the wind isn’t blowing and the sun isn’t shining, and it helps balance energy need with energy supply.

Europe has embraced Renewable Hydrogen as a key component to advancing its goal of eliminating carbon emissions, but it has been slow to catch on in the U.S. Until now. The Biden Administration has committed billions in new Research & Development funds to advance Renewable Hydrogen and projects are starting to be developed right here in our own backyard.

In Washington, Douglas County PUD broke ground on March 8, 2021, on a new Renewable Hydrogen pilot project near Baker Flats, East Wenatchee, that will support their Wells Hydroelectric Project. This project was made possible through SB 5588, bipartisan legislation that passed the Washington State Legislature in 2019 and was signed by Gov. Jay Inslee. Also in Washington, Puget Sound Energy will be conducting a series of pilot projects at their Georgetown Training Facility. Teams will perform a series of tests using different hydrogen/natural gas blends and test the system for leaks, air quality after combustion, gas quality, and impact on the appliances used.

In Oregon, NW Natural, Eugene Water & Electric Board (EWEB), and Bonneville Environmental Foundation signed an agreement in October of 2020 to collaborate on a proposed Renewable Hydrogen plant in Eugene. With the growth of wind and solar generation, along with existing hydroelectric generation, EWEB says it periodically has an abundance of renewable electricity available that can be used to produce hydrogen that can be stored for months or even years in existing natural gas infrastructure. Last year, NW Natural began testing a 5% hydrogen blend of natural gas to evaluate impacts on the system and end-use equipment performance at its Sherwood Operations and Training Center. In 2021, they are expanding blend testing to include additional end-use equipment performance on furnaces, fireplaces, and water heaters.

The 75,000 miles of existing natural gas infrastructure is a vital component to delivering clean energy in the future. As we’ve learned in the Pacific Northwest recently, having the electricity go out in a storm can be made more bearable with a reliable natural gas system that allows us to continue to heat our homes and cook for our families.

Countries around the world are embracing Renewable Hydrogen as a key component of their carbon emissions goals. By preserving and expanding our own natural gas infrastructure here in the Pacific Northwest, we can ensure we have clean, reliable power in the future.

The Efficiency of Natural Gas Versus Electricity

On average, a house fueled by natural gas is responsible for about one-third fewer greenhouse gas (GHG) emissions than a comparable all-electric home.

Why? Let’s take a look at what’s called the full fuel cycle, which accounts for how much energy is retained – or lost – from an energy source until its final use in your water heater, oven, or home heating system. With the full fuel cycle in mind, natural gas’s direct use comes out as a winner in the energy efficiency race. For example, by the time you turn on an electric appliance, up to 68 percent of the original fuel’s energy value has been lost. That means the full fuel cycle efficiency is about 32 percent. By contrast, a natural gas appliance’s full fuel cycle efficiency is about 92 percent – a substantial difference. More efficient use of fuel means less energy loss and less that needs to be produced, which reduces GHG emissions.

The graphic illustrates the efficiency of natural gas and electricity on a full fuel cycle basis for 100MMbtu (100 million British Thermal Units). A Btu is a measure of the energy content in fuel expressed by the heat required to raise the temperature of one pound of water by one degree Fahrenheit at a specific temperature and pressure. One Btu equals 252 calories, 778 footpounds, 1,055 joules, or 0.293 watt-hours. One cubic foot of natural gas contains about 1,027 Btus.