Posts

NWGA Guest Blog:  Renewable Hydrogen Helps Natural Gas Advance Clean Energy in the Pacific Northwest

From the Partnership for Energy Progress (PEP)

Please enjoy the following article from PEP that can also be found at https://www.pepnw.org/renewable-hydrogen-helps-natural-gas-advance-clean-energy-in-the-pacific-northwest/.

How will natural gas infrastructure advance the goal of clean energy in the Pacific Northwest? One of the most promising new technologies is called Renewable Hydrogen.

Renewable Hydrogen – or “green” hydrogen – is created by utilizing excess wind, solar or hydroelectric power to separate water molecules into hydrogen and oxygen. This process, called electrolysis, then delivers hydrogen into natural gas pipelines and releases the oxygen into the air. Renewable Hydrogen acts just like battery storage for excess renewable electricity. It captures the excess power so we can use it when the wind isn’t blowing and the sun isn’t shining, and it helps balance energy need with energy supply.

Europe has embraced Renewable Hydrogen as a key component to advancing its goal of eliminating carbon emissions, but it has been slow to catch on in the U.S. Until now. The Biden Administration has committed billions in new Research & Development funds to advance Renewable Hydrogen and projects are starting to be developed right here in our own backyard.

In Washington, Douglas County PUD broke ground on March 8, 2021, on a new Renewable Hydrogen pilot project near Baker Flats, East Wenatchee, that will support their Wells Hydroelectric Project. This project was made possible through SB 5588, bipartisan legislation that passed the Washington State Legislature in 2019 and was signed by Gov. Jay Inslee. Also in Washington, Puget Sound Energy will be conducting a series of pilot projects at their Georgetown Training Facility. Teams will perform a series of tests using different hydrogen/natural gas blends and test the system for leaks, air quality after combustion, gas quality, and impact on the appliances used.

In Oregon, NW Natural, Eugene Water & Electric Board (EWEB), and Bonneville Environmental Foundation signed an agreement in October of 2020 to collaborate on a proposed Renewable Hydrogen plant in Eugene. With the growth of wind and solar generation, along with existing hydroelectric generation, EWEB says it periodically has an abundance of renewable electricity available that can be used to produce hydrogen that can be stored for months or even years in existing natural gas infrastructure. Last year, NW Natural began testing a 5% hydrogen blend of natural gas to evaluate impacts on the system and end-use equipment performance at its Sherwood Operations and Training Center. In 2021, they are expanding blend testing to include additional end-use equipment performance on furnaces, fireplaces, and water heaters.

The 75,000 miles of existing natural gas infrastructure is a vital component to delivering clean energy in the future. As we’ve learned in the Pacific Northwest recently, having the electricity go out in a storm can be made more bearable with a reliable natural gas system that allows us to continue to heat our homes and cook for our families.

Countries around the world are embracing Renewable Hydrogen as a key component of their carbon emissions goals. By preserving and expanding our own natural gas infrastructure here in the Pacific Northwest, we can ensure we have clean, reliable power in the future.

The Efficiency of Natural Gas Versus Electricity

On average, a house fueled by natural gas is responsible for about one-third fewer greenhouse gas (GHG) emissions than a comparable all-electric home.

Why? Let’s take a look at what’s called the full fuel cycle, which accounts for how much energy is retained – or lost – from an energy source until its final use in your water heater, oven, or home heating system. With the full fuel cycle in mind, natural gas’s direct use comes out as a winner in the energy efficiency race. For example, by the time you turn on an electric appliance, up to 68 percent of the original fuel’s energy value has been lost. That means the full fuel cycle efficiency is about 32 percent. By contrast, a natural gas appliance’s full fuel cycle efficiency is about 92 percent – a substantial difference. More efficient use of fuel means less energy loss and less that needs to be produced, which reduces GHG emissions.

The graphic illustrates the efficiency of natural gas and electricity on a full fuel cycle basis for 100MMbtu (100 million British Thermal Units). A Btu is a measure of the energy content in fuel expressed by the heat required to raise the temperature of one pound of water by one degree Fahrenheit at a specific temperature and pressure. One Btu equals 252 calories, 778 footpounds, 1,055 joules, or 0.293 watt-hours. One cubic foot of natural gas contains about 1,027 Btus.

Renewable is Doable

 

Renewable is Doable

By Alex Schay

In North America, we rely on natural gas to provide the majority of our space and process heat. It is also safe to assert that, in most cases, the next MegaWatt hour will be generated through the combustion of natural gas. For example, 80% of the heat used for food processing is derived from natural gas.

In order to make meaningful progress toward addressing climate change, gas utilities are taking steps to reduce the carbon footprint of their fuel mix. Gas utilities have five tools that will enable them to reduce the carbon intensity of their fuel, including:

  • Energy efficiency;
  • Reduce gas flaring and fugitive methane emissions;
  • Tighten up pipeline infrastructure to minimize methane leakage;
  • Surplus renewable electricity may be used to convert water into Renewable Hydrogen (RH2); and,
  • Decomposition of organic waste may be used to produce Renewable Natural Gas (RNG), e.g., at landfills, at commercial & municipal wastewater treatment plants, as well as on dairies and confined animal feeding operations.

What is Renewable Natural Gas?

Both Conventional Natural Gas and Renewable Natural Gas (RNG) contain an identical CH4 molecule. RNG is a green fuel that comes from waste material, such as garbage, human waste, and animal manure. As such, RNG uses waste streams that are part of the current lifecycle to create a useful product that burns cleanly and significantly reduces Greenhouse Gas emissions as compared with gasoline or Diesel.

 

GHG reductions accrue when using CNG and RNG as opposed to gasoline or Diesel
Conventional (fossil) Natural Gas (CNG) 5% – 15%
Renewable Natural Gas (RNG) sourced from a landfill 40% – 50%
RNG sourced from a municipal wastewater treatment plant 75% – 85%
RNG generated from animal manure Ø  > than 100%

Food processing plants may offer a special opportunity for the production of RNG. Many food-processing facilities have their own wastewater treatment plant (WWTP). Often times, gas generated at commercial WWTPs is captured in covered lagoons and then sent to a flare. These types of waste-management scenarios offer significant opportunities to improve the gas collection, production, and utilization.

Because the Federal Renewable Fuel Standard classifies biogas generated at food-processing facilities as an “Advanced Biofuel,” RNG generated at such projects will only earn D5 Renewable Identification Numbers (RINs) when used as a transportation fuel. More valuable D3 RINs, however, are generated at landfills, municipal WWTPs, as well, as from animal manure. As such, RNG from food-processing facilities will not deliver as much economic benefit as RNG from landfills or municipal WWTPs when used as a transportation fuel.

To that end, RNG produced at food-processing plants may offer a cost-competitive resource that gas utilities may use to reduce their fuel mix’s carbon footprint. For example, a recent analysis of anthropogenic GHG emissions associated with RNG that will be produced at a dairy-processing plant in Washington State revealed that this fuel will have a carbon footprint that is more than 95% lower than conventional natural gas. In this way, food processors may help gas utilities reduce their fuel mix’s carbon intensity in a cost-effective manner.

At present, 32% of US energy consumption is fueled by natural gas. Unlike electricity, which must be used immediately or lost forever, RNG and RH2 can be stored for use when needed. A diversified decarbonization strategy will embrace all technologies, including cleaning up both the electricity grid and natural gas pipeline network. With this context in mind, we encourage an “All-of-the-Above” strategy as we work to decarbonize our energy future.

 

GUEST BLOG: Coming Solar Eclipse Further Proves that Renewables Need Natural Gas

Anti-fossil fuel activists like 350.org’s Bill McKibben often pretend the United States can run on 100 percent renewable energy without the use of any traditional fuel sources. McKibben recently wrote in Rolling Stone that “the sundown problem is being solved fast, as batteries are able to store the energy from the morning sun and the wind from a gusty evening to keep the power running overnight.”

McKibben’s claims simply aren’t true though, and preparations for next week’s total solar eclipse illustrate this cold, hard fact.

Because storage technology to allow for solar power to stand alone — even during a brief loss of sunlight — doesn’t currently exist, the solar industry has been actively preparing for how to mitigate the issue in places like sunny California where that industry thrives. The solution? Natural gas.

Benefits of Direct Use of Natural Gas

For many years, energy agencies have alerted Americans to the importance of energy efficiency. A variety of tags and certifications, backed by financial incentives, encourage us to understand our equipment buying options. We know that it makes sense to spend a little more on a product so that we can save money and energy throughout its useful life.

These efforts continue to reduce per capita energy use for both natural gas and electric customers. And the more energy we save, the lower our impact on the environment.

Key Takeaways From The WSU Emissions Study

Important news in the natural gas utility world last week with the release of a study published in the journal, Environmental Science and Technology, detailing a dramatic decrease in methane emissions from US local distribution systems when compared to prior estimates.

The study was led by the Northwest’s own Washington State University, with the support of the Environmental Defense Fund (EDF), Conestoga-Rovers and Associates, an engineering and environmental consulting firm, and major natural gas utilities from across the US.

Check out the video below for a review of study’s justification and methodology:

Three key takeaways from the study (you can access the entire study by clicking here):

“The researchers found that upgrades in metering and regulating stations, changes in pipeline materials, better instruments for detecting pipeline leaks as well as regulatory changes have led to methane emissions that are from 36% to 70% lower than current Environmental Protection Agency estimates when the data gathered for this study is combined with current pipeline miles and the numbers of facilities.”

  • When returning to sites identified as large methane emitters in a study performed by the Gas Research Institute (GRI) in 1992, the researchers found significant emissions reductions in facilities that had been upgraded or replaced with newer equipment:

“To understand the large reductions found in this work relative to the GRI/EPA results, we identified nine facilities from among the larger emitting sites measured during the GRI/ EPA 1992 program to resample with our high-flow and tracer- ratio techniques. These results show substantial reductions in emissions from each individual station (factors of 2 to 50) from 1992 to the present, with one exception. In two cases, the local operator indicated that significant equipment changes had occurred at the site; while at a third site, the local operator indicated that there had been no equipment upgrades at the site in the past 20 years. This particular site was the only site without a significant reduction in emissions.”

  • While emissions nationwide were lower than prior estimates, utilities located in the Western US were responsible for emissions rates even lower than the national average:

“We also examined how emissions from pipeline leaks varied on a regional basis in the U.S. due to differences in pipeline type and miles by region (see SI Section S4.3; there was no statistical difference in EFs by region). The eastern region accounts for 34% of the total U.S. CH4 from pipeline leaks, while the western region contributes less than 20% (Figure 1). In the eastern region, emissions are dominated by leaks from cast iron and unprotected steel characteristic of older systems. As such, leaks from cast iron and unprotected steel pipe account for 70% of the eastern emissions and almost half of total U.S. emissions. In the western region, systems are newer with more miles of plastic and protected steel pipe, and leaks from these systems contribute less than 5% of the total U.S. emissions. These regional variations and the low emissions associated with plastic pipes are significant as the U.S. moves toward replacement of older pipelines with plastic and uses plastic for new distribution expansion.”

This study was the third in a series reviewing methane emissions from throughout the natural gas supply chain. In each case the research was performed with the cooperation of the EDF, an academic institution, and relevant natural gas facility owners and operators.

Stay tuned for a blog in the coming weeks where we’ll discuss some of the parallels between each of the three studies.