GUEST BLOG: GAS INFRASTRUCTURE KEY FOR CLIMATE TECHNOLOGY SOLUTIONS

A report by researchers at Columbia University’s Center on Global Energy Policy presents a well-rounded view on the role that natural gas infrastructure will play in reaching net-zero targets and bridging emerging energy technologies.

Researchers had the Leaders Summit on Climate – during which countries, led by the United States, committed to more ambitious emission reduction targets – as a backdrop for the release of their report. Carbon capture and storage and hydrogen were among the most talked-about climate solutions brought up by world leaders, industry experts, and other key actors during the Summit. The report addresses both technologies while anchoring them to the potential role the U.S. natural gas pipeline system may play.

Natural Gas Is Here For the Long-Haul.

Natural gas dominates the U.S. energy system and is not going anywhere soon. As the researchers explain:

“Studies by energy agencies, universities, and the industry that model future U.S. natural gas consumption consistently show continued use of natural gas for at least the next 30 years, even in scenarios where the country achieves net-zero targets by midcentury. There is no quick replacement for gas in the U.S. energy mix.”

Per the report, some numbers that showcase natural gas’ prominence in the United States include:

  • Natural gas accounts for a third of the country’s electricity generation, a third of industrial energy consumption, and a quarter of residential energy consumption.
  • About 48 percent of U.S. homes (179 million people) currently use natural gas.
  • The three dominant uses for natural gas in the United States are electricity generation, industrial heat, and residential sectors.
  • Total consumption of natural gas has grown by 25 percent in the last decade.

The report adds a new perspective on how to approach both energy and climate solutions by continuing to support natural gas. According to the researchers, there is a need for greater leak detection, repair, and control, as well as retrofitting the existing pipeline network to accommodate fuels like hydrogen, biomass, or even to transport CO2 companies capture:

“Rather, these investments in existing infrastructure can support a pathway toward wider storage and delivery of cleaner and increasingly low-carbon gases while lowering the overall cost of the transition and ensuring reliability across the energy system.”

What does this mean for the U.S. natural gas pipeline system?

Repurposing natural gas infrastructure to transport not only natural gas, but other lower carbon gases, instead of banning, interrupting, or canceling infrastructure projects, will reduce costs and jumpstart low-carbon energy technologies. This is ultimately not a challenge but an opportunity:

“But retrofitting and otherwise improving the existing pipeline system are not a choice between natural gas and electrification or between fossil fuels and zero-carbon fuels… In the same way that the electric grid allows for increasingly low-carbon electrons to be transported, the natural gas grid should be viewed as a way to enable increasingly low-carbon molecules to be transported.”

In the end, the energy transition is about finding smart, technology-driven solutions to address climate concerns. By enhancing an already well-established infrastructure system to transport other gases, the United States will guarantee continued energy access and resilience to all communities in the long term.

Guest Blog: Energy in Depth, Joel Acosta.

Total Electrification — Food for Thought

The old adage, “Never put all your eggs in one basket.” is as true for the energy system as it is for anything else. Diversity of energy sources is essential to ensure we can rely on the energy we need when we need it.

We enjoy a safe, reliable, and affordable energy delivery system here in the Northwest. The interdependence of two amazing but inherently different energy infrastructures makes it so. One system is the machine that instantaneously conveys electricity into our region’s farthest and most remote areas. The other is the natural gas system spanning 128,000 miles (206,000 Km for those of you who prefer the metric system) that delivers warmth and comfort to ten million residents of Idaho, Oregon, Washington, and British Columbia and productive energy to almost 350,000 businesses, institutions, and industries that are the region’s economic engine. The two systems function very differently but are interconnected and operate seamlessly together.

That integrated system is at risk. One of the trendiest and most poorly understood concepts in energy – “electrify everything” – is ascendant. The idea is to eliminate consumer choice in the energy they can use by mandating that everything in our homes, offices, manufacturing facilities, and cars be powered with electricity. Several groups are pushing this idea with a vested interest in its success.

Anybody who experienced the recent Northwest “heat dome” knows first-hand the value of electricity in our daily lives. If you are one of the half-million people who lost power during the February ice storm or one of the hundreds of families who lost homes to the wildfires last summer, you are familiar with its vulnerabilities. You are also likely aware that the natural gas infrastructure continued to operate without interruption during each circumstance, providing hot water, cooking, and some space heat when the electricity was out and fuel for the electricity that cooled homes and businesses when the wind wasn’t blowing and after the sunset.

If our economy – and daily lives – will rely this much on electricity, we need to know the grid isn’t going to break down. Right now, we don’t know that — even just for today’s level of demand. In fact, the chance of a regional power supply disruption will increase to one in four in the next few years, according to the Northwest Power and Conservation Council. Their forecast of significantly increased risk of blackouts and brownouts across the region does not include aggressive policy-driven electrification of buildings and transportation currently being contemplated in some jurisdictions. That’s quite a gamble.

A study from Princeton University finds that electrifying nearly all transport and buildings could contribute to doubling — or more — the amount of electricity required in the U.S. by 2050. For example, over the past decade, the number of U.S. electricity outages has doubled. There is a long list of culprits, including retirements of dispatchable generation like coal and nuclear, high winds toppling tree limbs, wildfires, ice storms, even aggressive squirrels. And because renewable electricity like solar and wind is intermittent, there is increasing pressure on the grid to manage this variability.

The Princeton University study estimates the country will need between double and triple today’s electricity transmission capacity to accommodate the Biden administration’s goal of achieving net-zero greenhouse-gas emissions by 2050. A number of analyses by local utilities demonstrate similar numbers. This objective will be extremely difficult to achieve in large part because no one wants high-voltage wires and substations near their home. Still, there can’t be the electrification of everything without a lot more of those wires and stations.

More interconnections also increase cyber-attack risks by providing more gateways and larger linked attack surfaces for hackers to enter undetected into a vital system to interrupt U.S. economic activity or safety. The more digitized and connected things to a plug, the more activities that have to increase cyber-protection tools and practices.

Not only is it risky to put all eggs in the electrification basket, it’s also unnecessary. The energy delivered by the natural gas system can and will change. Instead of building a whole new energy infrastructure on top of a safe, modern, and highly reliable energy delivery system that currently serves millions of residents and hundreds of thousands of businesses, we can adapt the existing system to more affordably and reliably address our region’s decarbonization goals.

Stay tuned for this series’s next installment when we discuss the promise and benefits of decarbonizing the fuel delivered by the natural gas system in the Pacific Northwest.

On Garbage Man Day, We Celebrate Workers and Our Planet with Advancements in Renewable Gas

Guest Blog: Daniel Gage, President of Natural Gas Vehicles for America

On June 17th, we recognize the hard work of the men and women who collect our garbage and recyclables. They not only keep our communities clean, but with advancements in renewable gas technology, they’re also helping fuel their fleets with clean, renewable natural gas (RNG).

Right here in the Pacific Northwest, landfills are turning trash into renewable natural gas that is then fueling those very trucks sent to collect the waste. It’s full circle.

Renewable natural gas captures organic methane gas from materials like wood, food, trash, and agricultural waste that would otherwise pollute our planet. Instead, that waste is now fueling large truck fleets, decarbonizing parts of our transportation system.

Cleaner air starts with cleaner trucks. It’s not only good for our planet, but natural gas and renewable natural gas vehicles are also more cost-effective at reducing criteria pollutant emissions. When comparing the cost of NOx reduction, natural gas refuse trucks are 86% more cost-effective than diesel and 54% more cost-effective than electric alternatives.

That’s why renewable natural gas use as a transportation fuel has increased 267% during the past five years. In 2020 alone, its use eliminated 3.5 million tons of carbon dioxide equivalents. Now, 53% of all on-road fuel used in natural gas vehicles is renewable natural gas and that number continues to grow with advancements in other renewable gas, such as green hydrogen both of which utilize existing natural gas infrastructure.

In states with clean fuel standard programs, RNG use as a transportation fuel is even greater. Last year in California, 92% of all-natural gas motor fuel was derived from renewable sources. And the California Air Resources Board data confirms that state fleets fueled by this bio-CNG (RNG) achieved a carbon-negative result in 2020, with an annual average carbon intensity of -5.845 gCO2e/MJ. That’s a carbon-negative commercial truck outcome now, not in five or ten years.

Thank you to our refuse industry workers for keeping our communities clean and turning a waste liability into a green energy asset.

REGISTER NOW!!! 18th Annual Energy Conference

You only have 7 days left to register for the 18th Annual Energy Conference on June 10. The conference is hosted by the Northwest Gas Association and the Alliance of Western Energy Consumers.

The countdown has started!

The conference is only ONE DAY this year (June 10th) — from 8:00 a.m. to 4:00 p.m.  The program is packed with informative and insightful energy presentations, as well as a unique opportunity for virtual networking — all from the comfort of your favorite chair. You don’t want to miss the industry’s leaders — together in one place on the same day, both regional and national — discussing the vital role natural gas will play in the energy future of the Pacific Northwest.

The conference starts with Grant Forsyth, Ph.D., the Chief Economist at Avista, with the Regional Economic OutlookJosh McCall returns with always great Natural Gas Market Fundamentals. Ben Kujala, Director of Power Planning, NWCC, will update us on the 2021 NW Power Plan.

The keynote panel discusses A Reliable, Affordable & Clean Energy Futurewith top-notch industry experts  featuring:

  • Teresa Acosta, Moderator, Calpine Energy Solutions,
  • Amy Andryszak, President & CEO, Interstate Natural Gas Association of America,
  • Timothy Egan, President & CEO, Canadian Gas Association,
  • Marty Durbin, President, Global Energy Institute, U.S. Chamber of Commerce, and
  • Karen Harbert, President & CEO, American Gas Association.

The afternoon continues with David Brown and Ken Dragoon from Obsidian Renewables bringing the Opportunities and Obstacles to Renewable Hydrogen.

And you don’t want to miss the final panel of the Pacific Northwest’s natural gas executive leaders discussing how they are Embracing the Future

  • David Anderson, President & CEO of NW Natural,
  • MaryKipp, President & CEO of Puget Sound Energy,
  • NicoleKivisto, President & CEO of Montana-Dakota Utilities,
  • JasonThackston, Senior Vice President of Avista Corporation, and
  • The moderator Camilo Amezquita, Vice President & General Manager of Williams NW Pipeline.

Secure your spot today and mark your calendar for June 10 for a compelling day of energy education!

If that isn’t enough, the program is now approved for Oregon CLE accreditation through the Oregon State Bar (Oregon Event ID is: 79817), and pending approval by the WA Bar for 5.5 law and legal CLE credits.

The countdown has started . . . Don’t miss out . . . You must register by June 9.

Register right here . . . right now!!!

Natural Gas Distribution Emissions Continue to Fall

The U.S. Environmental Protection Agency (EPA) recently released its Inventory of U.S. Greenhouse Gas Emissions and Sinks, showing that annual greenhouse gas emissions (GHG) from the natural gas distribution system declined 69 percent from 1990 to 2019. During this same period natural gas utility companies added more than 788,000 miles of pipeline to serve 21 million more customers. Distribution systems owned and operated by local natural gas utilities emit only 0.08 percent of produced natural gas.

The EPA report showing decreasing methane emissions from the natural gas system is more evidence that the industry is pro-actively and aggressively improving their carbon profile.

This continuing downward trend in greenhouse gas emissions from the natural gas delivery system further shows the essential role Northwest gas utilities play in the region’s clean energy future.  The industry has been pro-actively adopting new technologies to reduce the emissions impacts of the gas sector, which compliments the Pacific Northwest’s overall climate policy goals.

Recognizing the imperative of decarbonization, the Pacific Northwest gas utilities and interstate pipeline companies are investing in carbon-free sources of gas such as renewable natural gas and green hydrogen, as well as improving the efficiency of natural gas appliances.

Natural gas, particularly direct-use appliances, are highly efficient and offer lower lifecycle GHG impacts than other products. Natural gas is a reliable and cost-effective fuel that is often the fuel of choice, representing billions of dollars in efficient and well-maintained infrastructure essential to important economic sectors in the Northwest, including food processors, nurseries, the wood products industry and manufacturers.

The EPA has developed and published its Inventory of U.S. Greenhouse Gas Emissions and Sinks for more than two decades. The EPA Inventory represents the most comprehensive assessment of U.S. greenhouse gas emissions available. The Inventory shows a low-methane emissions profile for natural gas distribution systems, shaped by an industry-wide natural gas emissions rate of production that is only 1.0 percent.

GUEST BLOG: Rethinking Natural Gas Bans

By Don C. Brunell

Sometimes being first isn’t good. Such is the case with legislation making Washington the only state to ban natural gas in new homes and commercial buildings.

Thankfully, the legislators ended their session in Olympia and left that bad idea on the table. However, it is destined to come back next year.

The issue is complicated and expensive. Earlier this year, Gov. Jay Inslee (D) unveiled it as part of a package to reduce greenhouse gas emissions. It included a phase-out of natural gas for space and water heating by forbidding the use of fossil fuels for heating and hot water in new buildings by 2030.

The ban trickled down from Seattle. Last month, the city adopted a partial gas ban with an update to its building code that says all new commercial and multifamily buildings four stories or taller must use electricity for heating. Among the questions not answered is new construction in smaller buildings and in houses, although it didn’t restrict the use of gas for cooking.

The natural gas ban was initiated by Berkeley city leaders in 2019. The idea spread to other California cities and more recently to Seattle. But opponents also were at work, and they helped to pass laws in four states — Arizona, Louisiana, Oklahoma and Tennessee — that restrict the ability of cities to ban gas hookups, Dan Gearino, Inside Climate News, reported.

Switching from natural gas to electricity is complicated and will impact everyone. Natural gas dependency is widespread.

With reference to Washington, Rep. Mary Dye (R-Pomroy) told KIRO’s Dori Monson: “It’s a big industry because it provides warmth for about 1.2 million residences, there’s 107,000 commercial buildings and 3,500 industrial buildings that are working under clean, efficient, reliable natural gas. Plus, it fires about 11 percent of our electricity grid. So you’re talking a very large labor force.”

For example, one-third of Clark Public Utilities electricity is generated at the River Road natural gas-fired generating plant. Clark PUD provides power to more than 203,000 customers in Vancouver and throughout Clark County.

Puget Sound Energy is our state’s largest energy utility providing electric power to more than one million customers. PSE also generates one-third of its electricity at nine natural gas-fired power plants.

Nationally, natural gas produced the most electricity in 2020—more than 40 percent. Renewables, including hydro, wind and solar, accounted for 20 percent.

At present, electricity is affordable in Washington but adding new generating capacity is expensive and will drive power rates higher.

In 2019, Washington had the fourth-lowest average electricity retail prices in the nation, while 56 percent of the state’s households used electricity as their primary home heating fuel. Getting to total electricity dependency is difficult especially if the Lower Snake River dams are breached.

While natural gas electrical generation is important, natural gas availability is vital to some smaller communities. For example, the cities of Enumclaw and Ellensburg are the natural gas providers to nearly 9,000 customers.

Renewable natural gas (RNG) from farms, garbage landfills and waste conversion systems feed gas into the current pipeline system. That gas would otherwise dissipate in the atmosphere.

Finally, switching to cleaner burning natural gas has improved our air quality. The U.S. Environmental Protection Agency (EPA) released its new Inventory of U.S. Greenhouse Gas Emissions and Sinks. It shows that annual greenhouse gas emissions (GHG) from the natural gas distribution system declined 69 percent from 1990 to 2019. During this same period, natural gas utility companies added more than 788,000 miles of pipeline to serve 21 million more customers.

Thankfully, lawmakers acted wisely and set the issue aside. There is just too much at stake to act hastily.

-30-

Don C. Brunell is a business analyst, writer, and columnist. He retired as president of the Association of Washington Business, the state’s oldest and largest business organization, and now lives in Vancouver. He can be contacted at theBrunells@msn.com

APRIL SAFETY MONTH — CALL BEFORE YOU DIG (Cont.)

Neglect one simple step and you could dig yourself into deep trouble. So “call before you dig.” It’s the law.  This one simple step can prevent damage, service disruptions, and potential disaster from uncharted digging into buried service facilities.  It’s the law for all of us: contractors, excavators, and homeowners.

Each utility sends employees to locate underground lines near the project with color-coded paint that identifies what kind of utility is underground. Failure to call and receive necessary guidance can prove messy at the very least, disrupt essential services, and may be downright hazardous. Everyone, including homeowners, must call when planning to dig. Neighborhoods, especially new ones, have extensive utility lines crisscrossing under their yards.

Here’s what happens next after you call to have underground utilities located.

  • A utility locator comes out to your home or business.
  • The contractor locates natural gas and utility lines on your property—for free.
  • The contractor uses visual markers to identify the lines so you know where it’s safe to dig, and areas you should avoid.

Each state or province in our region has its own convenient number for its location service:

OREGON

Oregon law created a statewide, one-call service – (800) 332-2344 or simply 811.  For more information, you can also visit online www.callbeforeyoudig.org/oregon/.

WASHINGTON

In Washington, you can call (800) 424-5555 or 811.  For additional online information, visit www.callbeforeyoudig.org/washington/.

IDAHO

Idaho has established it’s Digline service which you can reach at (800) 342-1585 or 811, with a Digline website www.digline.com.

BRITISH COLUMBIA

British Columbia has its own easy-to-use “BC 1 Call” service at (800) 474-6886 or visit the website at www.bc1c.ca.

Finally, once the utilities have been to your home or business and marked any underground utility lines – RESPECT THE MARKS.  Don’t dig within 12-inches of the markings.  Also, below is a handy chart for understanding what the different colored markings identify:

Stay Safe – Call before you dig

811 is the LAW.  Digging a new flower bed or garden – Call 811. Even if it is just a small flower bed? How about installing a post call 811.  Is it any different if you hire a landscaper or contractor?  No – call 811.

Even if you are worried about slowing down your project, please call 811.  Safety.  Safety.  Safety.  Digging without knowing the approximate location of underground utilities.  What gets damaged?  Natural gas pipelines.  Electric lines.  Phone, internet, and other communication cables.  Water lines.  Sewer lines.  This can result in service disruptions to your own home or business, and your neighbors, as well as serious injuries and costly repairs.

You may not know, but according to data collected by Common Ground Alliance (CGA), an underground utility line is damaged once every six minutes nationwide because someone decided to dig without first calling 811.

CALL BEFORE YOU DIG.  Please.  It is actually federal law to call 811 at least two business days before digging.

Every time you dig follow these steps:

  1. Notify – call 811.
  2. Wait – utilities will do the marking in 2-3 days.
  3. Confirm – that all of the affected utility operators have responded to your request by comparing the marks to the list of utilities the one-call center notified. If they are, dig safely.  If not, call again.
  4. Respect the marks – State laws generally prohibit the use of mechanized equipment within 18-24 inches of a marked utility, which is called the “tolerance zone” (click here for information from your state).
  5. Dig Safely – Avoid digging near the marks (within 18-24 inches on all sides, depending on state law), or consider moving your project to another part of your yard.

Making a call to 811 is the easiest way to make sure you keep you and your neighbors safe!!!

NWGA Guest Blog:  Renewable Hydrogen Helps Natural Gas Advance Clean Energy in the Pacific Northwest

From the Partnership for Energy Progress (PEP)

Please enjoy the following article from PEP that can also be found at https://www.pepnw.org/renewable-hydrogen-helps-natural-gas-advance-clean-energy-in-the-pacific-northwest/.

How will natural gas infrastructure advance the goal of clean energy in the Pacific Northwest? One of the most promising new technologies is called Renewable Hydrogen.

Renewable Hydrogen – or “green” hydrogen – is created by utilizing excess wind, solar or hydroelectric power to separate water molecules into hydrogen and oxygen. This process, called electrolysis, then delivers hydrogen into natural gas pipelines and releases the oxygen into the air. Renewable Hydrogen acts just like battery storage for excess renewable electricity. It captures the excess power so we can use it when the wind isn’t blowing and the sun isn’t shining, and it helps balance energy need with energy supply.

Europe has embraced Renewable Hydrogen as a key component to advancing its goal of eliminating carbon emissions, but it has been slow to catch on in the U.S. Until now. The Biden Administration has committed billions in new Research & Development funds to advance Renewable Hydrogen and projects are starting to be developed right here in our own backyard.

In Washington, Douglas County PUD broke ground on March 8, 2021, on a new Renewable Hydrogen pilot project near Baker Flats, East Wenatchee, that will support their Wells Hydroelectric Project. This project was made possible through SB 5588, bipartisan legislation that passed the Washington State Legislature in 2019 and was signed by Gov. Jay Inslee. Also in Washington, Puget Sound Energy will be conducting a series of pilot projects at their Georgetown Training Facility. Teams will perform a series of tests using different hydrogen/natural gas blends and test the system for leaks, air quality after combustion, gas quality, and impact on the appliances used.

In Oregon, NW Natural, Eugene Water & Electric Board (EWEB), and Bonneville Environmental Foundation signed an agreement in October of 2020 to collaborate on a proposed Renewable Hydrogen plant in Eugene. With the growth of wind and solar generation, along with existing hydroelectric generation, EWEB says it periodically has an abundance of renewable electricity available that can be used to produce hydrogen that can be stored for months or even years in existing natural gas infrastructure. Last year, NW Natural began testing a 5% hydrogen blend of natural gas to evaluate impacts on the system and end-use equipment performance at its Sherwood Operations and Training Center. In 2021, they are expanding blend testing to include additional end-use equipment performance on furnaces, fireplaces, and water heaters.

The 75,000 miles of existing natural gas infrastructure is a vital component to delivering clean energy in the future. As we’ve learned in the Pacific Northwest recently, having the electricity go out in a storm can be made more bearable with a reliable natural gas system that allows us to continue to heat our homes and cook for our families.

Countries around the world are embracing Renewable Hydrogen as a key component of their carbon emissions goals. By preserving and expanding our own natural gas infrastructure here in the Pacific Northwest, we can ensure we have clean, reliable power in the future.

The Natural Gas System is Inherently Resilient

The natural gas system is structurally and empirically resilient, which was graphically demonstrated in Oregon’s February Ice Storm 2021, showing that while even as tens of thousands of homes lost electricity, homes with natural gas continued to have heat, cooking, and hot water.

The inherent resiliency of the natural gas system can be attributed to several factors:

  • Planning and preparation: in combination with the physical properties of natural gas results in few operational issues that threatened supply or capacity.
  • Underground Facilities: the extensive underground location of facilities protects them from weather impacts.
  • Line Pack: transmission pipelines incidentally store gas at pressure (called “line pack”) which provides a buffer that can mitigate the effects of abnormal operating conditions.
  • Network Reliability: the network configuration of the pipeline industry means that, in the event of an outage, there is usually a “work-around” that allows continued service to LDCs and directly connected consumers.
  • Confined Impact: the physical configuration of gas pipelines limits the impact of a disruption; not susceptible to “cascading events” such as those on electric transmission systems.

The resiliency of the natural gas system was especially important during the Oregon Ice Storm. Natural gas is the workhorse fuel for homes in Oregon. For example, NWGA member company NW Natural serves 2.5 million people in 140 communities while delivering more energy than any other utility in Oregon. NW Natural also heats 74 percent of the residential square footage in its service area and provides 90 percent of the energy needs for residential space and water heat on the coldest winter days. It should also be mentioned that it does all of this at great savings to Oregon families: for the typical residence in Oregon, natural gas can be 50+ percent cheaper than electricity to heat both their home and water.

Ice Storm 2021 that electricity and natural gas are not either-or, but both-and. The resiliency of the natural gas system and its broad distribution system (in addition to natural gas inherently being a low-carbon, low-emission clean fuel) make it an essential, unavoidably necessary part of a low-carbon energy future in the Pacific Northwest.

Surviving Ice Storms with Natural Gas

Just three weeks ago in February, Oregon’s Willamette Valley was pummeled by a 50-year ice storm.  Hundreds of thousands of homes lost electricity, as well as phone, cable, and cell service – and many neighborhoods went 10 days or more without electric service. It is important to remember what an electrified home loses without electricity: heat (no baseboard heat, no heat pump), no stove or oven for cooking, no appliances (most importantly, no coffeemaker), no lights, and no hot water. But there were no natural gas interruptions during this time. Homes with natural gas could still use their gas fireplaces for heat, their gas stoves to cook, and had hot water from their gas water heaters (think hot showers in a cold house). Why is this? The natural gas system is inherently reliable AND resilient.

It’s important to understand the difference between resilience and reliability. The terms are often referenced together or even used interchangeably, but they are very different. As described in a recent report by the American Gas Foundation, “resilience is defined as a system’s ability to prevent, withstand, adapt to, and quickly recover from a high-impact, low-likelihood event such as a major disruption in a transmission pipeline. In comparison, reliability refers to a systems’ ability to maintain energy delivery under standard operating conditions, such as the standard fluctuations in demand and supply.” So, when we are discussing how the natural gas system performs during a severe ice storm, we are discussing resilience.

The natural gas industry’s resilience can be tested by its ability to prepare for and adapt to changing conditions and withstand and recover rapidly from disruptions, as well as withstand and recover from deliberate attacks, accidents, or naturally occurring threats or incidents.

Ultimately, the greatest test of resilience is whether a utility’s commitments to customers can be met regardless of the degree of stress that is caused by a weather event.

Despite some of nature’s harshest conditions, during the Oregon Ice Storm of 2021, the natural gas industry passed this test with flying colors, proving both exceedingly reliable and resilient.

Resilience was demonstrated through the continued service and availability of natural gas despite threatening weather and outages on the electric grid.

It is exactly this resilience that makes natural gas the perfect complement to electricity in providing warmth and light to homes and businesses in the Pacific Northwest.  And gas is a natural part of the region’s move to decarbonize, providing stability, reliability, and resilience.

Diverse West Coast Leaders Concerned Over Proposed Gas Bans

The City of Seattle recently enacted an energy code that will ban natural gas space and water heating in new commercial and large multi-family buildings starting in March. Washington state lawmakers considered a bill that would ban natural gas in all construction projects starting in 2030. And the Oregon Department of Environmental Quality is developing rules as part of Governor Kate Brown’s Cap-and Reduce executive order that could lead to a similar ban on the commercial and residential use of natural gas.  California policymakers are also racing in the same direction.

Utility and business leaders in Washington testified at a January legislative hearing in Olympia on HB 1084, warning it would raise energy costs and encourage certain industries to move their facilities out of state, costing Washington families’ jobs.

Dan Kirschner, NWGA executive director, explained to the committee that the bill “is not the right approach” to reducing carbon emissions in the state. “Unnecessarily raising energy costs, eliminating energy choices, and ultimately abandoning a reliable energy system isn’t necessary to achieve meaningful decarbonization.”

Kirschner explained that Washington has some of the country’s cheapest energy rates, giving it a strong competitive advantage nationally for industries like food processors that rely on natural gas. “The bottom line is those food processing facilities in Central Washington rely on low-cost energy,” he said. “If [costs] go up, it’s entirely possible…that they’ll be looking for options where to shift that production to lower-cost states.” The food processing industry alone employs more than 30,000 people in Washington State, according to the Bureau of Labor Statistics.

Association of Washington Business (AWB) Energy Director Peter Godlewski warned the committee that if energy rates go up it will amount to “still yet another reason businesses leave Washington state. We cannot take a healthy grid for granted.”

President Nicole Kivisto of Cascade Natural Gas told the committee that utilities like Cascade are already reducing carbon through energy-saving innovations such as smart thermometers. She added that they should be “enhancing rather than abandoning” natural gas. “What we support is building upon energy efficiency programs.”

And Puget Sound Energy (PSE) State and Federal Affairs Director Janet Kelly noted “particular concerns about reliability and cost impacts. Electrification is not the preferred pathway to achieve carbon reduction.” She added that an E3 study released in December concluded that Washington faces a capacity shortage of up to 7,000 megawatts (MW) by 2025 and that new planned energy sources won’t fill that gap.

The bill in question, HB 1084, failed to make it out of the Appropriations Committee before the legislative deadline. Unions representing different construction and building trade labor interests were pivotal in opposing the measure.

In California, Assemblyman Jim Cooper (D-Elk Grove) has become one of the harshest critics of California’s climate policies and the environmental groups pushing them. The natural gas bans being adopted by California city councils have ignited a backlash from prominent Black and Latino leaders, who are concerned that the energy price increases caused by the prohibitions on the use of natural gas are a form of regressive tax on low- and middle-income residents. Cooper said the environmental groups pushing the bans on natural gas show “deliberate indifference” to California’s low- and middle-income consumers’ needs. “It’s outrageous,” he said.

Sierra Club responded to Cooper and Rubio in a letter saying, “the concerns expressed in your letter regarding the cost of utility bills are exactly those furthered by Sierra Club’s advocacy to assure SoCalGas does not improperly impose expenses on ratepayers.”  However, the Sierra Club says it wants a “gas-free future for our homes and buildings.”

A “gas-free future” ignores the cost impacts on the low and middle class in the California context while achieving minimal GHG reductions. A recent report by the UCLA Institute of the Environment and Sustainability found that “whole house electrification programs are likely to exacerbate daily peak electricity loads and increase total household expenditures on energy.” It continues, “Moreover, the state’s continued reliance on natural gas peaker-plants means that these efforts will likely only produce modest GHG emissions abatement benefits.”

Lastly, from the UCLA report, “Low-income residents of disadvantaged communities, who have the least flexible work schedules, the least access to high-efficiency appliances and energy management systems, and inhabit the most poorly insulated housing stock, will be most adversely affected by these changes.”  The same issues apply in Oregon and Washington as well.

Others in California who have spoken out against efforts to ban natural gas include Timothy Alan Simon, the chairman of the California Black Chamber of Commerce, and a former member of the California Public Utility Commission, and Assemblywoman Blanca Rubio, a Democrat from the Los Angeles area.  And The Two Hundred, a coalition of Latino civil-rights leaders, has sued California over its energy and housing policies, also opposes gas bans.  The California Restaurant Association has filed a lawsuit to stop the bans, as well as the utility SoCalGas.

The disparity between the haves and have-nots becomes more evident when considering that Californians pay the country’s highest energy prices. Whether in the Central Valley or the Los Angeles basin, temperatures are hotter and commutes to work are longer if you live inland. Californians pay over a dollar more per gallon of gas than the national average. When it comes to electricity, data from the U.S. Energy Information Agency shows Californians pay 55% more than the rest of the nation.

The more than 100,000 miles of safe, reliable infrastructure that is the natural gas system in the Northwest delivers energy to more than 2.5 million homes, 250,000 businesses and institutions, and 5,000 industrial facilities that employ thousands upon thousands of Northwesterners. The energy that the system delivers can and will change. The region’s low carbon goals can be achieved faster, more affordably, and with less disruption by adapting this robust system, rather than by abandoning it to build something new.

The Efficiency of Natural Gas Versus Electricity

On average, a house fueled by natural gas is responsible for about one-third fewer greenhouse gas (GHG) emissions than a comparable all-electric home.

Why? Let’s take a look at what’s called the full fuel cycle, which accounts for how much energy is retained – or lost – from an energy source until its final use in your water heater, oven, or home heating system. With the full fuel cycle in mind, natural gas’s direct use comes out as a winner in the energy efficiency race. For example, by the time you turn on an electric appliance, up to 68 percent of the original fuel’s energy value has been lost. That means the full fuel cycle efficiency is about 32 percent. By contrast, a natural gas appliance’s full fuel cycle efficiency is about 92 percent – a substantial difference. More efficient use of fuel means less energy loss and less that needs to be produced, which reduces GHG emissions.

The graphic illustrates the efficiency of natural gas and electricity on a full fuel cycle basis for 100MMbtu (100 million British Thermal Units). A Btu is a measure of the energy content in fuel expressed by the heat required to raise the temperature of one pound of water by one degree Fahrenheit at a specific temperature and pressure. One Btu equals 252 calories, 778 footpounds, 1,055 joules, or 0.293 watt-hours. One cubic foot of natural gas contains about 1,027 Btus.

Renewable is Doable

 

Renewable is Doable

By Alex Schay

In North America, we rely on natural gas to provide the majority of our space and process heat. It is also safe to assert that, in most cases, the next MegaWatt hour will be generated through the combustion of natural gas. For example, 80% of the heat used for food processing is derived from natural gas.

In order to make meaningful progress toward addressing climate change, gas utilities are taking steps to reduce the carbon footprint of their fuel mix. Gas utilities have five tools that will enable them to reduce the carbon intensity of their fuel, including:

  • Energy efficiency;
  • Reduce gas flaring and fugitive methane emissions;
  • Tighten up pipeline infrastructure to minimize methane leakage;
  • Surplus renewable electricity may be used to convert water into Renewable Hydrogen (RH2); and,
  • Decomposition of organic waste may be used to produce Renewable Natural Gas (RNG), e.g., at landfills, at commercial & municipal wastewater treatment plants, as well as on dairies and confined animal feeding operations.

What is Renewable Natural Gas?

Both Conventional Natural Gas and Renewable Natural Gas (RNG) contain an identical CH4 molecule. RNG is a green fuel that comes from waste material, such as garbage, human waste, and animal manure. As such, RNG uses waste streams that are part of the current lifecycle to create a useful product that burns cleanly and significantly reduces Greenhouse Gas emissions as compared with gasoline or Diesel.

 

GHG reductions accrue when using CNG and RNG as opposed to gasoline or Diesel
Conventional (fossil) Natural Gas (CNG) 5% – 15%
Renewable Natural Gas (RNG) sourced from a landfill 40% – 50%
RNG sourced from a municipal wastewater treatment plant 75% – 85%
RNG generated from animal manure Ø  > than 100%

Food processing plants may offer a special opportunity for the production of RNG. Many food-processing facilities have their own wastewater treatment plant (WWTP). Often times, gas generated at commercial WWTPs is captured in covered lagoons and then sent to a flare. These types of waste-management scenarios offer significant opportunities to improve the gas collection, production, and utilization.

Because the Federal Renewable Fuel Standard classifies biogas generated at food-processing facilities as an “Advanced Biofuel,” RNG generated at such projects will only earn D5 Renewable Identification Numbers (RINs) when used as a transportation fuel. More valuable D3 RINs, however, are generated at landfills, municipal WWTPs, as well, as from animal manure. As such, RNG from food-processing facilities will not deliver as much economic benefit as RNG from landfills or municipal WWTPs when used as a transportation fuel.

To that end, RNG produced at food-processing plants may offer a cost-competitive resource that gas utilities may use to reduce their fuel mix’s carbon footprint. For example, a recent analysis of anthropogenic GHG emissions associated with RNG that will be produced at a dairy-processing plant in Washington State revealed that this fuel will have a carbon footprint that is more than 95% lower than conventional natural gas. In this way, food processors may help gas utilities reduce their fuel mix’s carbon intensity in a cost-effective manner.

At present, 32% of US energy consumption is fueled by natural gas. Unlike electricity, which must be used immediately or lost forever, RNG and RH2 can be stored for use when needed. A diversified decarbonization strategy will embrace all technologies, including cleaning up both the electricity grid and natural gas pipeline network. With this context in mind, we encourage an “All-of-the-Above” strategy as we work to decarbonize our energy future.

 

Blog Posts
Pages
Categories
Monthly